*----* MuPAD 2.0.0 -- The Open Computer Algebra System /| /| *----* | Copyright (c) 1997 - 2000 by SciFace Software | *--|-* All rights reserved. |/ |/ *----* Licensed to: Nicolas M. Thiery >> read("testDegreeBounds.mu"): compTGroupF(8,49,0):quit proc InvariantRingTransitiveGroup(n, i, p) ... end C/C++ Debugger interface is active. Debugger: 'ddd', Process: 2605 C/++ debugger name is set to ´gdb´Info: Computation of the invariant ring of the 49th transitive permutation\ group on 8 variables in characteristic 0. Info: Module GLIP version 0.4 ready. Type GLIP::doc(); for usage informati\ on. Info: ====================================================================\ ========== Info: Computation of a minimal generating set using SAGBI+linear algebra. Info: Version: $Id: comphead.mu,v 1.2 2001/03/21 17:51:40 nthiery Exp $ Date: Wed May 2 21:08:49 CEST 2001 Host: giulia1.medicis.polytechnique.fr Info: ====================================================================\ ========== Info: degreeBound: from the dimension of the space: 28 Info: Constructing a minimal generating set at degree 0 Info: No generators at degree 0 Info: Constructing a minimal generating set at degree 1 Info: Constructing the initial poset at degree 1 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 1 initial monomials . Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 1 Skiped: 0 Char Col: 0 Mgs: 1 Info: 1 70 25256865 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 1: Date: Wed May 2 21:10:42 CEST 2001 Info: Time: 70 ms Info: Memory: 25273 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 0, 0, 0, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 2 Info: Constructing the initial poset at degree 1 Info: Constructing the initial poset at degree 2 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 2 initial monomials .. Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 2 Skiped: 1 Char Col: 0 Mgs: 1 Info: 2 80 25273249 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 2: Date: Wed May 2 21:10:42 CEST 2001 Info: Time: 80 ms Info: Memory: 25273 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 0, 0, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 3 Info: Constructing the initial poset at degree 3 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 3 initial monomials ... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 3 Skiped: 2 Char Col: 0 Mgs: 1 Info: 3 120 25273249 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 3: Date: Wed May 2 21:10:43 CEST 2001 Info: Time: 120 ms Info: Memory: 25273 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 0, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 4 Info: Constructing the initial poset at degree 4 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 5 initial monomials ..... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 5 Skiped: 4 Char Col: 0 Mgs: 1 Info: 4 180 25273249 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 4: Date: Wed May 2 21:10:43 CEST 2001 Info: Time: 180 ms Info: Memory: 25289 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 5 Info: Constructing the initial poset at degree 5 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 7 initial monomials ....... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 7 Skiped: 6 Char Col: 0 Mgs: 1 Info: 5 240 25306017 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 5: Date: Wed May 2 21:10:43 CEST 2001 Info: Time: 240 ms Info: Memory: 25306 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 6 Info: Constructing the initial poset at degree 6 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 11 initial monomials ........... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 11 Skiped: 10 Char Col: 0 Mgs: 1 Info: 6 380 25306017 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 6: Date: Wed May 2 21:10:44 CEST 2001 Info: Time: 380 ms Info: Memory: 25306 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 1, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 7 Info: Constructing the initial poset at degree 7 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 15 initial monomials ............... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 15 Skiped: 14 Char Col: 0 Mgs: 1 Info: 7 520 25322401 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 7: Date: Wed May 2 21:10:45 CEST 2001 Info: Time: 520 ms Info: Memory: 25322 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 1, 1, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 8 Info: Constructing the initial poset at degree 8 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 22 initial monomials ...................... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 22 Skiped: 21 Char Col: 0 Mgs: 1 Info: 8 770 25338785 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 8: Date: Wed May 2 21:10:46 CEST 2001 Info: Time: 770 ms Info: Memory: 25338 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 1, 1, 1] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 9 Info: secondaryInvariantsSeries: Computation from cycle types Info: secondaryInvariantsSeries: working on cycletype, [4, 2, 0, 0, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [2, 1, 0, 1, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [3, 0, 0, 0, 1, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [0, 4, 0, 0, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [1, 2, 1, 0, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [2, 0, 2, 0, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [0, 0, 0, 2, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [0, 0, 1, 0, 1, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [0, 1, 0, 0, 0, 1, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [8, 0, 0, 0, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [5, 0, 1, 0, 0, 0, \ 0, 0] Info: secondaryInvariantsSeries: working on cycletype, [1, 0, 0, 0, 0, 0, \ 1, 0] Info: No generators at degree 9 Info: Constructing a minimal generating set at degree 10 Info: No generators at degree 10 Info: Constructing a minimal generating set at degree 11 Info: No generators at degree 11 Info: Constructing a minimal generating set at degree 12 Info: No generators at degree 12 Info: Constructing a minimal generating set at degree 13 Info: No generators at degree 13 Info: Constructing a minimal generating set at degree 14 Info: No generators at degree 14 Info: Constructing a minimal generating set at degree 15 Info: No generators at degree 15 Info: Constructing a minimal generating set at degree 16 Info: No generators at degree 16 Info: Constructing a minimal generating set at degree 17 Info: No generators at degree 17 Info: Constructing a minimal generating set at degree 18 Info: No generators at degree 18 Info: Constructing a minimal generating set at degree 19 Info: No generators at degree 19 Info: Constructing a minimal generating set at degree 20 Info: No generators at degree 20 Info: Constructing a minimal generating set at degree 21 Info: No generators at degree 21 Info: Constructing a minimal generating set at degree 22 Info: No generators at degree 22 Info: Constructing a minimal generating set at degree 23 Info: No generators at degree 23 Info: Constructing a minimal generating set at degree 24 Info: No generators at degree 24 Info: Constructing a minimal generating set at degree 25 Info: No generators at degree 25 Info: Constructing a minimal generating set at degree 26 Info: No generators at degree 26 Info: Constructing a minimal generating set at degree 27 Info: No generators at degree 27 Info: Constructing a minimal generating set at degree 28 Info: Constructing the initial poset at degree 9 Info: Constructing the initial poset at degree 10 Info: Constructing the initial poset at degree 11 Info: Constructing the initial poset at degree 12 Info: Constructing the initial poset at degree 13 Info: Constructing the initial poset at degree 14 Info: Constructing the initial poset at degree 15 Info: Constructing the initial poset at degree 16 Info: Constructing the initial poset at degree 17 Info: Constructing the initial poset at degree 18 Info: Constructing the initial poset at degree 19 Info: Constructing the initial poset at degree 20 Info: Constructing the initial poset at degree 21 Info: Constructing the initial poset at degree 22 Info: Constructing the initial poset at degree 23 Info: Constructing the initial poset at degree 24 Info: Constructing the initial poset at degree 25 Info: Constructing the initial poset at degree 26 Info: Constructing the initial poset at degree 27 Info: Constructing the initial poset at degree 28 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 1802 initial monomials ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ .......................... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 1802 Skiped: 1801 Char Col: 0 Mgs: 1 Info: 28 387390 32129029 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 28: Date: Wed May 2 21:17:30 CEST 2001 Info: Time: 6 min 27 s 390 ms Info: Memory: 32129 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [7, 6, 5, 4, 3, 2, 0, 1] Info: -------------------------------------- Info: Total time: 8 min 12 s 530 ms Info: ====================================================================\ ========== Info: Computation of a minimal generating set using SAGBI+linear algebra. Info: Version: $Id: comphead.mu,v 1.2 2001/03/21 17:51:40 nthiery Exp $ Date: Wed May 2 21:17:31 CEST 2001 Host: giulia1.medicis.polytechnique.fr Info: ====================================================================\ ========== Info: Total time: 0 ms