*----* MuPAD 2.0.0 -- The Open Computer Algebra System /| /| *----* | Copyright (c) 1997 - 2000 by SciFace Software | *--|-* All rights reserved. |/ |/ *----* Licensed to: Nicolas M. Thiery >> read("testDegreeBounds.mu"): compTGroupF(7,6,0):quit proc InvariantRingTransitiveGroup(n, i, p) ... end C/C++ Debugger interface is active. Debugger: 'ddd', Process: 4848 C/++ debugger name is set to ´gdb´Info: Computation of the invariant ring of the 6th transitive permutation \ group on 7 variables in characteristic 0. Info: Module GLIP version 0.4 ready. Type GLIP::doc(); for usage informati\ on. Info: ====================================================================\ ========== Info: Computation of a minimal generating set using SAGBI+linear algebra. Info: Version: $Id: comphead.mu,v 1.2 2001/03/21 17:51:40 nthiery Exp $ Date: Wed May 2 20:32:19 CEST 2001 Host: giulia3.medicis.polytechnique.fr Info: ====================================================================\ ========== Info: degreeBound: from the dimension of the space: 21 Info: Constructing a minimal generating set at degree 0 Info: No generators at degree 0 Info: Constructing a minimal generating set at degree 1 Info: Constructing the initial poset at degree 1 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 1 initial monomials . Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 1 Skiped: 0 Char Col: 0 Mgs: 1 Info: 1 30 5078113 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 1: Date: Wed May 2 20:32:21 CEST 2001 Info: Time: 30 ms Info: Memory: 5094 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 0, 0, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 2 Info: Constructing the initial poset at degree 1 Info: Constructing the initial poset at degree 2 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 2 initial monomials .. Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 2 Skiped: 1 Char Col: 0 Mgs: 1 Info: 2 10 5110881 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 2: Date: Wed May 2 20:32:22 CEST 2001 Info: Time: 10 ms Info: Memory: 5110 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 0, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 3 Info: Constructing the initial poset at degree 3 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 3 initial monomials ... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 3 Skiped: 2 Char Col: 0 Mgs: 1 Info: 3 20 5110881 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 3: Date: Wed May 2 20:32:23 CEST 2001 Info: Time: 20 ms Info: Memory: 5110 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 0, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 4 Info: Constructing the initial poset at degree 4 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 5 initial monomials ..... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 5 Skiped: 4 Char Col: 0 Mgs: 1 Info: 4 20 5110881 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 4: Date: Wed May 2 20:32:23 CEST 2001 Info: Time: 20 ms Info: Memory: 5110 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 0, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 5 Info: Constructing the initial poset at degree 5 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 7 initial monomials ....... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 7 Skiped: 6 Char Col: 0 Mgs: 1 Info: 5 40 5110881 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 5: Date: Wed May 2 20:32:23 CEST 2001 Info: Time: 40 ms Info: Memory: 5110 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 0, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 6 Info: Constructing the initial poset at degree 6 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 11 initial monomials ........... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 11 Skiped: 10 Char Col: 0 Mgs: 1 Info: 6 50 5110881 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 6: Date: Wed May 2 20:32:24 CEST 2001 Info: Time: 50 ms Info: Memory: 5110 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 1, 0] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 7 Info: Constructing the initial poset at degree 7 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 15 initial monomials ............... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 15 Skiped: 14 Char Col: 0 Mgs: 1 Info: 7 70 5143649 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 7: Date: Wed May 2 20:32:24 CEST 2001 Info: Time: 70 ms Info: Memory: 5143 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [1, 1, 1, 1, 1, 1, 1] Info: -------------------------------------- Info: Constructing a minimal generating set at degree 8 Info: secondaryInvariantsSeries: Computation from cycle types Info: secondaryInvariantsSeries: working on cycletype, [3, 2, 0, 0, 0, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [1, 1, 0, 1, 0, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [0, 2, 1, 0, 0, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [2, 0, 0, 0, 1, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [1, 0, 2, 0, 0, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [4, 0, 1, 0, 0, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [7, 0, 0, 0, 0, 0, \ 0] Info: secondaryInvariantsSeries: working on cycletype, [0, 0, 0, 0, 0, 0, \ 1] Info: No generators at degree 8 Info: Constructing a minimal generating set at degree 9 Info: No generators at degree 9 Info: Constructing a minimal generating set at degree 10 Info: No generators at degree 10 Info: Constructing a minimal generating set at degree 11 Info: No generators at degree 11 Info: Constructing a minimal generating set at degree 12 Info: No generators at degree 12 Info: Constructing a minimal generating set at degree 13 Info: No generators at degree 13 Info: Constructing a minimal generating set at degree 14 Info: No generators at degree 14 Info: Constructing a minimal generating set at degree 15 Info: No generators at degree 15 Info: Constructing a minimal generating set at degree 16 Info: No generators at degree 16 Info: Constructing a minimal generating set at degree 17 Info: No generators at degree 17 Info: Constructing a minimal generating set at degree 18 Info: No generators at degree 18 Info: Constructing a minimal generating set at degree 19 Info: No generators at degree 19 Info: Constructing a minimal generating set at degree 20 Info: No generators at degree 20 Info: Constructing a minimal generating set at degree 21 Info: Constructing the initial poset at degree 8 Info: Constructing the initial poset at degree 9 Info: Constructing the initial poset at degree 10 Info: Constructing the initial poset at degree 11 Info: Constructing the initial poset at degree 12 Info: Constructing the initial poset at degree 13 Info: Constructing the initial poset at degree 14 Info: Constructing the initial poset at degree 15 Info: Constructing the initial poset at degree 16 Info: Constructing the initial poset at degree 17 Info: Constructing the initial poset at degree 18 Info: Constructing the initial poset at degree 19 Info: Constructing the initial poset at degree 20 Info: Constructing the initial poset at degree 21 Info: Generating the full matrix of decomposable invariants by iterating t\ hrough all 437 initial monomials ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ..........................................................................\ ................................................................... Info: Applying Gauss Elimination Info: Extracting initial monomials that are not hit Info: Dim: 437 Skiped: 436 Char Col: 0 Mgs: 1 Info: 21 10220 6241377 #Stats: degree,time(ms),mem(bytes) Info: Statistics for degree 21: Date: Wed May 2 20:32:35 CEST 2001 Info: Time: 10 s 230 ms Info: Memory: 6241 ko. Info: S-Pairs: 0 (+ 0 normalf->0 + 0 reduction->0 + 0 non-lcm->0) Info: Minimal generators: 1 Info: -------------------------------------- Info: [6, 5, 4, 3, 2, 0, 1] Info: -------------------------------------- Info: Total time: 12 s 0 ms Info: ====================================================================\ ========== Info: Computation of a minimal generating set using SAGBI+linear algebra. Info: Version: $Id: comphead.mu,v 1.2 2001/03/21 17:51:40 nthiery Exp $ Date: Wed May 2 20:32:35 CEST 2001 Host: giulia3.medicis.polytechnique.fr Info: ====================================================================\ ========== Info: Total time: 0 ms